Tackling the Sonar Equation

Sonar Equation: Single Target

$$V_o = SL + G_1 + TS + 2D_i(\phi, \theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$$

where:

 V_0 = voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D_i}(\phi, \theta)$ = directivity index (i.e. 0 dB for on-axis targets)

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Source Level Cal Measurement

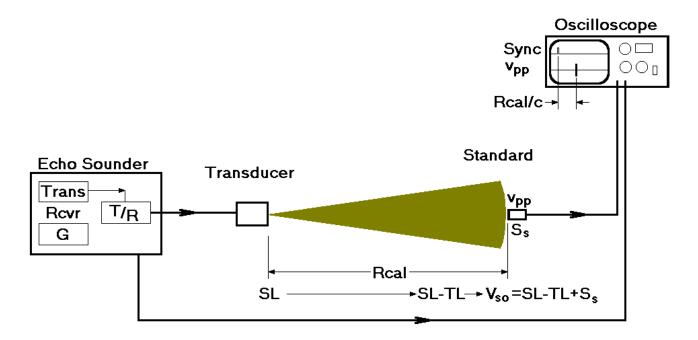
$$SL = 20\log(i_{p-p}/8) + S_i$$

where:

 i_{p-p} = peak to peak current to transducer

S_i = transducer transmitting response

(pressure on axis at 1 m produced by 1 unit electrical power (units amps))


Source Level in sonar equation is a pressure from a source (p_o)

$$SL = 20log(p_o)$$

Example:

$$i_{p-p} = 40 \text{ A}$$
 $S_i = 209 \text{ dB} \parallel 1 \text{ } \mu\text{Pa}$ $SL = 20 \log(40/8) + 209 = 223 \text{ dB} \parallel 1 \text{ } \mu\text{Pa}$

Source Level Measurement

The oscilloscope vpp (volts) is converted to $V_{so}(dB_v)$:

$$V_{so} = 20 \cdot \log(v_{pp}/2/1.414)$$

The Sonar equation for the one-way transmission to the standard:

$$TL_{cal} = 20 \cdot log(R_{cal}) + \alpha R_{cal}$$

SS is a calibration value provided with the standard, therefore:

$$V_o = SL + \frac{G_1}{G_1} + TS + 2D_i(\phi, \theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$$

where:

 V_o = voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D_i}(\phi, \theta)$ = directivity index (i.e. 0 dB for on-axis targets)

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$

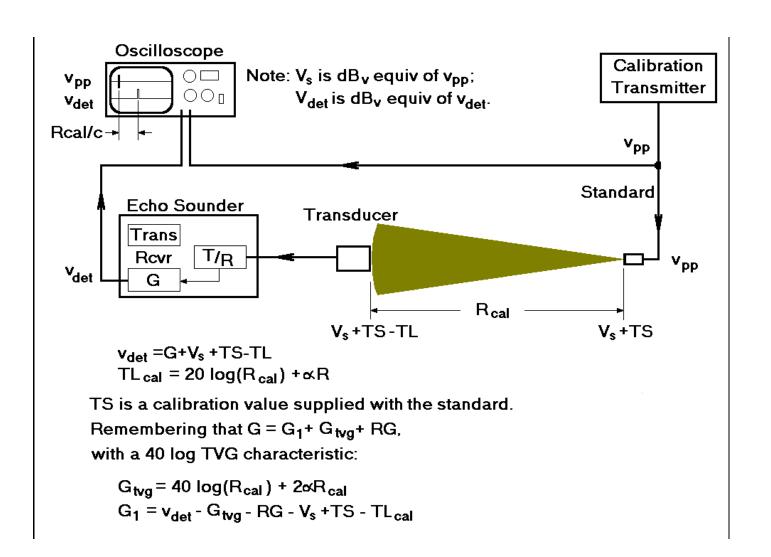
 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Through System Gain: G₁

- receive sensitivity of echosounder
- dependent on range compensation (i.e. 20 or 40 log TVG)

$$G_1 = V_{det} - L - 40log(r_{cal}) + 2\alpha r_{cal} - G_{rec}$$
 where:


 V_{det} = voltage detected

L = transducer diameter

 r_{cal} = calibration range

 α = absorption loss

G₁ Measurement

Calibration Sheet: SL and G₁

```
Sum Channel Detected 12 kHz Output
                                                  Vdet = V12kHz + 3.01 dB
Calibration Readings
                                                 Sensitivity at Rcal Gx = Vdet - L
                                                                                                              40log
                           0.408 volts (rms)
        v12kHz =
                                                                             -129.87 dB/uPa@Rcal
                                                                     Gx =
                                                                                                              R G₁
                           -4.78 dB Vdet
           Vdet =
TVG Gain G(40) = (40 \log Rcal + 2a Rcal)
                                                 Sensitivity at 1 m G1 = Gx - G(40) - Rg
                                                                             -171.87 dB/uPa @ 1m
          G(40) = 42.00 dB
                                                                    G1 =
20 Log R Channel Detected Output
Calibration Readings
                                                 Sensitivity at Rcal Gx = Vdet - L
                                                                                                              20log
                           0.575 volts (peak)
                                                                    Gx = -129.90 dB/uPa@Rcal
           vdet =
                                                                                                              R G₁
                          -4.81 dBV (det)
           Vdet =
TVG Gain G(20) = (20 \log Rcal + 2a Rcal)
                                                 Sensitivity at 1 m G1 = Gx - G(20) - Rg
          G(20) =
                           21.00 dB
                                                                    G1 =
                                                                             -150.90 dB/uPa @ 1m
Transmission Loss TL = 20 log Rs + aR
            TL =
                           15.71 dB
Source Level SL = \overline{Vso - Ss + TL}
```

Transmit	Standard Transducer		
Power (dB)	Vso (FFT) dBV (+20)	Vso (FFT) dBV (+40)	Source Level (dBuPa @ 1 m)
20.0	-8.13		216.79
14.0	-14.06		210.86
8.0		0.01	204.93
2.0		-6.56	198.36

Source Level (SL)

$$V_o = SL + G_1 + \frac{TS}{t} + 2D_i(\phi, \theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$$

where:

 V_o = voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size) dB re 1m⁻¹

 $\mathbf{D_i}(\phi, \theta)$ = directivity index (i.e. 0 dB for on-axis targets)

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Target Strength TS

- acoustic size of target (e.g. fish or zooplankton)
- ability of an object to reflect sound to the source
- linear measure: backscattering cross section σ_{bs} units m²
- measured as a ratio of sound intensities or pressures (I \propto p²)

$$\begin{split} \sigma_{bs} &= I_r/I_i = p^2_r/p^2_i \\ TS &= 10log(I_r) - 10\ log(I_i) = 20log(p_r) \text{ - } 20log(p_i) \\ TS &= 10log(\sigma_{bs}) \end{split}$$

$$V_o = SL + G_1 + TS + 2\frac{D_i(\phi, \theta)}{(\phi, \theta)} - 40\log(r) - 2\alpha r + G_{tvg} + G_{rec}$$

where:

 V_0 = voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D_i}(\phi, \theta)$ = directivity index (i.e. 0 dB for on-axis targets)

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Transducer Directivity

$$D(\theta) = \frac{\sin\left(\frac{kL}{2}\sin\theta\right)}{\frac{k}{L}\sin\theta} = \operatorname{sinc}\left(\frac{kL}{2}\sin\theta\right) \quad \text{Directivity Index}$$

$$D_{i} = 10\log(D) = 10\log(I_{o}/\overline{I})$$

$$D_i = 10\log(D) = 10\log(I_o/\overline{I})$$

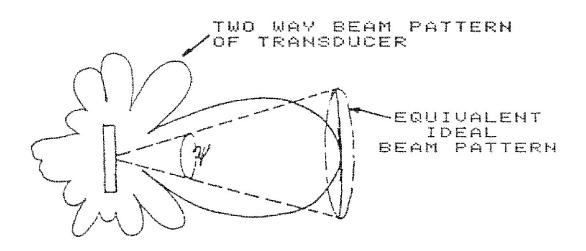
sinc = (sin(x)/x)

where:

 I_o = radiated intensity at acoustic axis

I = mean intensity over all directions

Calculate from transducer


$$D_i = 10 \log(4\pi a/\lambda)$$
 where $a =$ active transducer area

Calculate from beam angles

$$D_i = 10\log(2.5/\sin(\beta_1/2)\sin(\beta_2/2))$$

where β 's = beam width at -3dB points

Equivalent Ideal Beam Pattern

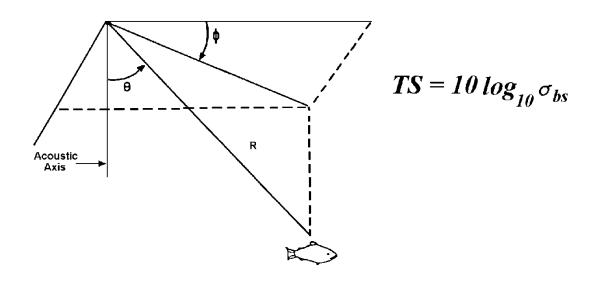
$$\psi = \int_{4\pi} b^2 d\Omega$$

$$\psi = \left(\frac{4.853}{kD}\right)^2$$

$$10\log(\Psi) = 10\log(\beta_1\beta_2/5800)$$

where β is active length of transducer

If square or circular transducer:


$$10\log(\Psi) = 10\log(\beta^2/5800)$$

where k is wavenumber and D diameter of transducer

Integrated Beam Pattern Factor

 one-way loss in signal intensity due to the angle of the target relative to the acoustic axis

$$I = k \frac{10^{-2\alpha R}}{R^4} b^2(\theta, \phi) \sigma_{bs}$$

Effect of Beam Pattern

- transmit response (i.e. acoustic level) is highest along acoustic axis
- receive response (i.e. echo level) is highest along acoustic axis
- echo received from a target will decrease off axis due to transmit and receive losses
- echo amplitude of a target depends on acoustic size of fish and position in beam

$$V_o = SL + G_1 + TS + 2D_i(\phi, \theta) - \frac{40log(r)}{40log(r)} - 2\alpha r + G_{tvg} + G_{rec}$$

where:

 $V_o = \text{voltage out (also EL echo level)}$

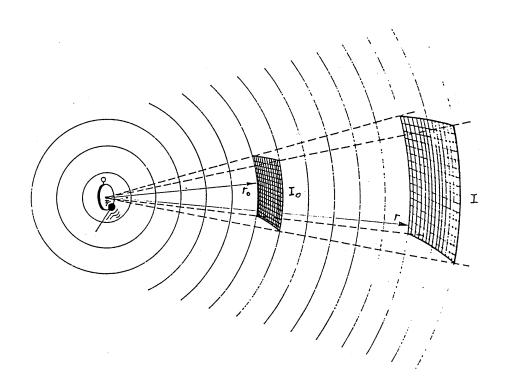
SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D_i}(\phi, \theta)$ = directivity index (i.e. 0 dB for on-axis targets)

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$


 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Transmission Loss

Geometric Spreading

- pressure decreases as the 1/distance from source
- spherical spreading from a point source (e.g. transducer)
- 2-way spreading increases as range²

$$I_{o}/I = (r/r_{o})^{2}$$

$$TL = 10log(I_o/I) = 20log(r/r_o)$$

if
$$r_0 = 1 \text{ m}$$

then one way $TL = 20 \log(r)$

and two way $TL = 40\log(r)$

$$V_o = SL + G_1 + TS + 2D_i(\phi, \theta) - 40log(r) - \frac{2\alpha r}{2\alpha r} + G_{tvg} + G_{rec}$$

where:

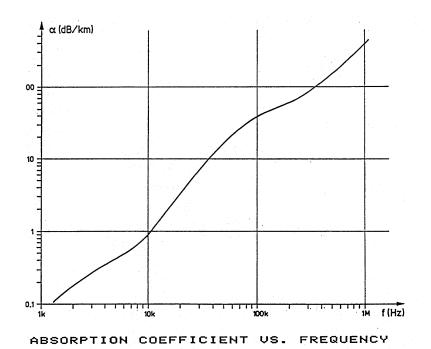
 V_0 = voltage out (also EL echo level)

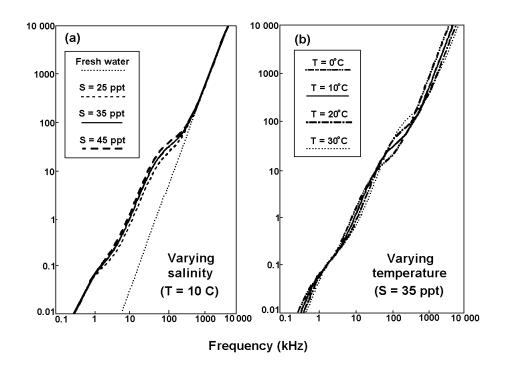
SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D_i}(\phi, \theta) = \text{directivity index (i.e. 0 dB for on-axis targets)}$

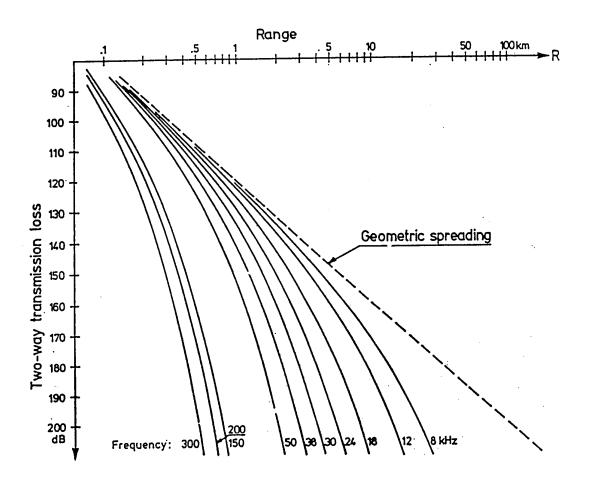

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$


 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Absorption

- attenuation of pressure due to friction (α , units nepers/m or dB/m))
- proportional to range
- dependent on frequency: increases proportional to the square of frequency
- higher in salt water than fresh water


Absorption Loss

One way: αr , units dBm⁻¹

Two way: $2\alpha r$, units dBm⁻¹

Total Transmission Loss

Total transmission loss (two way): $40 \log(r) + 2\alpha r$

$$V_o = SL + G_1 + TS + 2D_i(\phi, \theta) - 40log(r) - 2\alpha r + \frac{G_{tvg}}{G_{tvg}} + G_{rec}$$

where:

 V_o = voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D_i}(\phi, \theta)$ = directivity index (i.e. 0 dB for on-axis targets)

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

Range Compensation: TVG

Time Varied Gain

- amplification applied to received echo to compensate for transmission loss due to beam spreading
- constant TVG is main reason why 'scientific' echosounders cost lots

Single target: small relative to wavelength

individual targets can be resolved (dependent on

target density and pulse duration)

one way spreading loss = $1/r^2$

two way spreading loss = $1/r^4$

Log form: $10\log(r^4) = 40\log(r)$

Range Compensation: TVG

If **Multiple** targets: assume constant density individual targets can not be resolved spreading is range-dependent target distribution is large relative to beam width

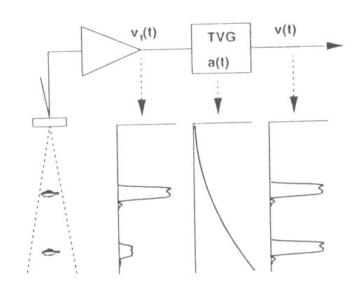
one way spreading loss = 1/rtwo way spreading loss = $1/r^2$

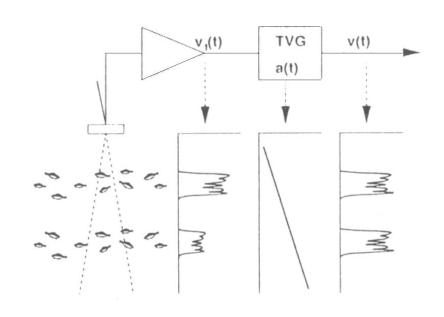
Log form: $10\log(r^2) = 20\log(r)$

Distinguishing 20 log and 40log TVG

20 log(r) (used for echo integration)

- Echo level for fish at range r α 1/r²
- (Echo level)² α 1/r⁴
- # fish @ r increases with area of beam (i.e. $1/r^2$)


So, squared signal $\alpha r^2(1/r^4) = 1/r^2$


Squared signal in dB $\alpha 10log(1/r^2) = -20log(r)$

G_{tvg}: Time Varied Gain

Individual targets: $40\log(r)$

Multiple targets: $20\log(r)$

where $v_1(t)$ = uncompensated voltage, a(t) = receiver gain, v(t) = compensated voltage

$$V_o = SL + G_1 + TS + 2D_i(\phi,\theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$$

where:

 V_0 = voltage out (also EL echo level)

SL = transducer source level (at a specific transmit level)

 G_1 = through system gain, at 1m

TS = target strength (acoustic size)

 $\mathbf{D_i}(\phi, \theta)$ = directivity index (i.e. 0 dB for on-axis targets)

 $40 \log(r) = \text{two-way transmission (spreading) loss at range r}$

 α = absorption coefficient

 G_{tvg} = time-varied-gain (20 or 40 log(r))

G_{rec}: System Receiver Gain

- amplification applied to received echo to center dynamic range of echosounder
- some manufacturers user selected: range -12 dB to +12 dB
- other manufacturers user sets minimum detected and then adds range (typically 36 dB)

Sonar Equation Example

You are on the NOAA R/V Oscar Dyson in the Gulf of Alaska. You are interested in the length distribution of juvenile walleye pollock in Barnabus Trough. You have a 120 kHz echosounder and the Traynor et al. publication that tells you: TS = 20log(L_{cm}) – 66. You measure a target strength of -45 dB re 1 μ Pa from a fish at 100m range. The water is 10° C with a salinity of 35, resulting in an absorption coefficient of 38.7 dB/km. The system is set so that you have a source level of 216.78 dB re 1 μ Pa. From the transducer calibration parameter sheet you know that the directivity index is -5 dB re 1 μ Pa, and the through system gain is 171.87 dB re 1 μ Pa .

What is the voltage recorded on your echosounder and what is the length of the fish?

Juvenile Walleye Pollock Length

$$V_o = SL + G_1 + TS + 2D_i(\phi, \theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$$

where:

Frequency = 120 kHz Target Range = 100 m H₂O Temp = 10°C Salinity = 35 ppt

 V_0 = voltage out (also EL echo level)

 $SL = 216.78 \text{ dB re } 1 \mu Pa \text{ transducer source level}$

 $G_1 = -171.87$ dB re 1 μ Pa through system gain, at 1m

 $TS = -45 \text{ dB re } 1 \mu Pa \text{ target strength}$

 $\mathbf{D_i}(\phi, \theta) = -5 \text{ dB re } 1 \text{ } \mu\text{Pa} \text{ directivity index}$

 $40 \log(r) = 80 \text{ dB re } 1 \mu\text{Pa}$ two-way transmission loss at range r

 $\alpha = 0.0387$ dB/m (120 kHz, 10° C, 35 ppt) absorption coefficient

 G_{tvg} = 80 dB re 1 μ Pa 40 log(r) time-varied-gain

 $G_{rec} = 0 dB re 1 \mu Pa receiver gain$

Sonar Equation Example

$$V_o = SL + G_1 + TS + 2D(\phi, \theta) - 40log(r) - 2\alpha r + G_{tvg} + G_{rec}$$

$$V_o = 216.79 + (-171.87) + (-45) + 2(-5) - 80 - 7.74 + 80 + 0$$

$$V_0 = -17.82 \text{ dB}_v$$

$$20\log(\text{volts}) = dB_v$$
 $10^{dBv/20} = \text{volts}$

 $10^{\text{dBv/20}} = 0.12853 \text{ volts}$

$$TS = 20log(L)-66$$

L = 11.22 cm